
Lecture 11: Efficient Algorithms
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Notation Convention

In today’s lecture capital alphabets, for example, X , represents
a natural number
Further, the number of bits needed to present the number X is
denoted by the corresponding small number x
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Length of Representation

Note that the smallest integer X that requires n bits for binary

representation has the binary representation 1

(n−1)-times︷ ︸︸ ︷
0· · · 0 . This

represents the number X = 2n−1.
Note that the largest integer X that can be expressed using n

bits has binary representation
n-times︷ ︸︸ ︷
1· · · 1. This represents the

number X = 2n − 1.
From these two observations, we can conclude that the
number of bits needed to represent any number X is give by
x =

⌈
lg(X + 1)

⌉
Intuitive Summary: The number X requires x = lgX bits for
its representation
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Efficiency

An efficient algorithm is an algorithm whose running time is
polynomial in the size of the input.
For example, suppose an algorithm takes as input a prime P
that needs p = 1000 bits to represent it. Note that the prime
P is at least 21000−1 = 2999, which is humongous (more than
the number of atoms in the universe). Our algorithm’s running
time should be polynomial in p = 1000, rather than the
number P ⩾ 2999.
We shall assume that all inputs are already provided in the
binary representation
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Addition I

Suppose we are given two number A and B . Our objective is
to generate the binary representation of the sum of these two
numbers.

Note that A needs a =
⌈
lg(A+ 1)

⌉
and B needs

b =
⌈
lg(B + 1)

⌉
bits for representation
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Addition II

Naive Attempt.

Add(A,B):
sum = A

For i = 1 to B:

sum+ = 1

Return sum

Note that the inner loop runs B times, which is at least 2b−1,
i.e., exponential in the input size. So, this algorithm is
inefficient.
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Addition III

Efficient Addition Algorithm.

Add(A,B):
• c = max{a, b}, carry = 0
• For i = 0 to c − 1:

• Ci = Ai + Bi + carry
• If Ci ⩾ 2:

• carry = 1
• Ci = Ci%2

• Else: carry = 0
• If carry == 1:

• c+ = 1
• Cc−1 = 1

• Return Cc−1Cc−2 . . .C1C0
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Addition IV

The running time of this algorithm is O(a+ b), where
a = logA and b = logB . This algorithm is efficient!

Efficient Algorithms



Multiplication I

Suppose we are given two number A and B . Our objective is
to generate the binary representation of the product of these
two numbers.

Our algorithm should have running time polynomial in
a =

⌈
lg(A+ 1)

⌉
and b =

⌈
lg(B + 1)

⌉

Efficient Algorithms



Multiplication II

Naive Attempt.

Multiply(A,B):
product = 1

For i = 1 to B:

product+ = A

Return product

Note that the inner loop runs B times, which is at least 2b−1,
i.e., exponential in the input size. So, this algorithm is
inefficient.
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Multiplication III

Efficient Addition Algorithm.

Multiply(A,B):
to_add = A

remains = B

product = 0

While remains > 0:

If remains&1= 1: product+ = to_add
to_add = to_add≪ 1
remains = remains≫ 1

Return product

The running time of this algorithm is O((a+ b)2), where
a = logA and b = logB . This algorithm is efficient!
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Multiplication IV

Additional Reading. Read Fast Fourier Transform for even
faster multiplication algorithms!
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Division

Students are encouraged to write the pseudocode of an
efficient division algorithm that takes as input integers A and
B and outputs integers M and R such that

1 B = M · A+ R, and
2 R ∈ {0, . . . ,A− 1}
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Finding Greatest Common Divisor I

Our objective is to find the greatest common divisor G of two
input integers A and B

Note that if we iterate over all integers {1, . . . ,A} to find the
largest integer that divides B , then this algorithm has a loop
that runs A times, that is, it is exponential in the input length

So, we use Euclid’s GCD algorithm. Let R be the remainder of
dividing B by A. If R = 0, then A is the GCD of A and B .
Otherwise, it recursively returns the gcd(R,A). This algorithm
is based on the observation that

gcd(A,B) = gcd(R,A)

Students are encouraged to prove this statement.
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Finding Greatest Common Divisor II

Euclid’s GCD Algorithm.

GCD(A,B)
R = B%A

While R > 0 :

B = A
A = R
R = B%A

Return A

Exercise. Prove that this is an efficient algorithm.
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Generate n-bit Random Number

The following code generates a random number in the range[
2n−1, 2n − 1

]
Random(n):

C = 1

For i = 1 to (n − 1):

r
$←{0, 1}

C = (C ≪ 1) | r

It is easy to see that this is an efficient algorithm
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Generate a Random n-bit Prime I

Assume that there exists an efficient algorithm Is_Prime(N)
that tests whether the integer N is a prime or not. In the
future, we shall see one such algorithm.

Consider the following code

Prime(n):
While true :

P = Random(n)
If Is_Prime(P) : Return P

The efficiency of the above algorithm depends on the number
of times the while-loop runs, which depends on the number of
primes in the range

[
2n−1, 2n − 1

]
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Generate a Random n-bit Prime II

We shall rely on the density of prime numbers to understand
the running time of the algorithm mentioned above

Theorem (Prime Number Theorem)

There are (roughly) N/ logN prime numbers < N

So, there are roughly 2n/n prime numbers < 2n. Similarly,
there are roughly 2n−1/(n − 1) prime numbers < 2n−1. So, in
the range

[
2n−1, 2n − 1

]
, the number of primes is (roughly)

2n

n
− 2n−1

n − 1
= 2n−1

(
2
n
− 1

n − 1

)
≈ 2n−1 1

n

The range
[
2n−1, 2n − 1

]
has a total of 2n−1 numbers.
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Generate a Random n-bit Prime III

So, the probability that a random number picked from this
range is a prime number is (roughly)

2n−1 · 1
n

2n−1 =
1
n

Intuitively, if we run the inner-loop n times, then we expect to
encounter one prime number. We shall make this more formal
in the next class.

I want to emphasize that if the density of the primes was not
1/poly(n), then the algorithm presented above will not be
efficient. We are extremely fortunate that primes are so dense!
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