
Lecture 11: Efficient Algorithms

Efficient Algorithms



Notation Convention

In today’s lecture capital alphabets, for example, X , represents
a natural number
Further, the number of bits needed to present the number X is
denoted by the corresponding small number x

Efficient Algorithms



Length of Representation

Note that the smallest integer X that requires n bits for binary

representation has the binary representation 1

(n−1)-times︷ ︸︸ ︷
0· · · 0 . This

represents the number X = 2n−1.
Note that the largest integer X that can be expressed using n

bits has binary representation
n-times︷ ︸︸ ︷
1· · · 1. This represents the

number X = 2n − 1.
From these two observations, we can conclude that the
number of bits needed to represent any number X is give by
x =

⌈
lg(X + 1)

⌉
Intuitive Summary: The number X requires x = lgX bits for
its representation

Efficient Algorithms



Efficiency

An efficient algorithm is an algorithm whose running time is
polynomial in the size of the input.
For example, suppose an algorithm takes as input a prime P
that needs p = 1000 bits to represent it. Note that the prime
P is at least 21000−1 = 2999, which is humongous (more than
the number of atoms in the universe). Our algorithm’s running
time should be polynomial in p = 1000, rather than the
number P ⩾ 2999.
We shall assume that all inputs are already provided in the
binary representation

Efficient Algorithms



Addition I

Suppose we are given two number A and B . Our objective is
to generate the binary representation of the sum of these two
numbers.

Note that A needs a =
⌈
lg(A+ 1)

⌉
and B needs

b =
⌈
lg(B + 1)

⌉
bits for representation

Efficient Algorithms



Addition II

Naive Attempt.

Add(A,B):
sum = A

For i = 1 to B:

sum+ = 1

Return sum

Note that the inner loop runs B times, which is at least 2b−1,
i.e., exponential in the input size. So, this algorithm is
inefficient.

Efficient Algorithms



Addition III

Efficient Addition Algorithm.

Add(A,B):
• c = max{a, b}, carry = 0
• For i = 0 to c − 1:

• Ci = Ai + Bi + carry
• If Ci ⩾ 2:

• carry = 1
• Ci = Ci%2

• Else: carry = 0
• If carry == 1:

• c+ = 1
• Cc−1 = 1

• Return Cc−1Cc−2 . . .C1C0

Efficient Algorithms



Addition IV

The running time of this algorithm is O(a+ b), where
a = logA and b = logB . This algorithm is efficient!

Efficient Algorithms



Multiplication I

Suppose we are given two number A and B . Our objective is
to generate the binary representation of the product of these
two numbers.

Our algorithm should have running time polynomial in
a =

⌈
lg(A+ 1)

⌉
and b =

⌈
lg(B + 1)

⌉

Efficient Algorithms



Multiplication II

Naive Attempt.

Multiply(A,B):
product = 1

For i = 1 to B:

product+ = A

Return product

Note that the inner loop runs B times, which is at least 2b−1,
i.e., exponential in the input size. So, this algorithm is
inefficient.

Efficient Algorithms



Multiplication III

Efficient Addition Algorithm.

Multiply(A,B):
to_add = A

remains = B

product = 0

While remains > 0:

If remains&1= 1: product+ = to_add
to_add = to_add≪ 1
remains = remains≫ 1

Return product

The running time of this algorithm is O((a+ b)2), where
a = logA and b = logB . This algorithm is efficient!

Efficient Algorithms



Multiplication IV

Additional Reading. Read Fast Fourier Transform for even
faster multiplication algorithms!

Efficient Algorithms



Division

Students are encouraged to write the pseudocode of an
efficient division algorithm that takes as input integers A and
B and outputs integers M and R such that

1 B = M · A+ R, and
2 R ∈ {0, . . . ,A− 1}

Efficient Algorithms



Finding Greatest Common Divisor I

Our objective is to find the greatest common divisor G of two
input integers A and B

Note that if we iterate over all integers {1, . . . ,A} to find the
largest integer that divides B , then this algorithm has a loop
that runs A times, that is, it is exponential in the input length

So, we use Euclid’s GCD algorithm. Let R be the remainder of
dividing B by A. If R = 0, then A is the GCD of A and B .
Otherwise, it recursively returns the gcd(R,A). This algorithm
is based on the observation that

gcd(A,B) = gcd(R,A)

Students are encouraged to prove this statement.

Efficient Algorithms



Finding Greatest Common Divisor II

Euclid’s GCD Algorithm.

GCD(A,B)
R = B%A

While R > 0 :

B = A
A = R
R = B%A

Return A

Exercise. Prove that this is an efficient algorithm.

Efficient Algorithms



Generate n-bit Random Number

The following code generates a random number in the range[
2n−1, 2n − 1

]
Random(n):

C = 1

For i = 1 to (n − 1):

r
$←{0, 1}

C = (C ≪ 1) | r

It is easy to see that this is an efficient algorithm

Efficient Algorithms



Generate a Random n-bit Prime I

Assume that there exists an efficient algorithm Is_Prime(N)
that tests whether the integer N is a prime or not. In the
future, we shall see one such algorithm.

Consider the following code

Prime(n):
While true :

P = Random(n)
If Is_Prime(P) : Return P

The efficiency of the above algorithm depends on the number
of times the while-loop runs, which depends on the number of
primes in the range

[
2n−1, 2n − 1

]

Efficient Algorithms



Generate a Random n-bit Prime II

We shall rely on the density of prime numbers to understand
the running time of the algorithm mentioned above

Theorem (Prime Number Theorem)

There are (roughly) N/ logN prime numbers < N

So, there are roughly 2n/n prime numbers < 2n. Similarly,
there are roughly 2n−1/(n − 1) prime numbers < 2n−1. So, in
the range

[
2n−1, 2n − 1

]
, the number of primes is (roughly)

2n

n
− 2n−1

n − 1
= 2n−1

(
2
n
− 1

n − 1

)
≈ 2n−1 1

n

The range
[
2n−1, 2n − 1

]
has a total of 2n−1 numbers.

Efficient Algorithms



Generate a Random n-bit Prime III

So, the probability that a random number picked from this
range is a prime number is (roughly)

2n−1 · 1
n

2n−1 =
1
n

Intuitively, if we run the inner-loop n times, then we expect to
encounter one prime number. We shall make this more formal
in the next class.

I want to emphasize that if the density of the primes was not
1/poly(n), then the algorithm presented above will not be
efficient. We are extremely fortunate that primes are so dense!

Efficient Algorithms


