Lecture 11: Efficient Algorithms

Notation Convention

- In today's lecture capital alphabets, for example, X, represents a natural number
- Further, the number of bits needed to present the number X is denoted by the corresponding small number x

Length of Representation

- Note that the smallest integer X that requires n bits for binary representation has the binary representation 1 $0 \cdots 0$. This represents the number $X = 2^{n-1}$.
- Note that the largest integer X that can be expressed using n bits has binary representation $\overbrace{1\cdots 1}^{n\text{-times}}$. This represents the number $X=2^n-1$.
- From these two observations, we can conclude that the number of bits needed to represent any number X is give by $X = \lceil \lg(X+1) \rceil$
- Intuitive Summary: The number X requires $x = \lg X$ bits for its representation

Efficiency

- An efficient algorithm is an algorithm whose running time is polynomial in the size of the input.
- For example, suppose an algorithm takes as input a prime P that needs p=1000 bits to represent it. Note that the prime P is at least $2^{1000-1}=2^{999}$, which is humongous (more than the number of atoms in the universe). Our algorithm's running time should be polynomial in p=1000, rather than the number $P\geqslant 2^{999}$.
- We shall assume that all inputs are already provided in the binary representation

Addition I

- Suppose we are given two number A and B. Our objective is to generate the binary representation of the sum of these two numbers.
- Note that A needs $a = \lceil \lg(A+1) \rceil$ and B needs $b = \lceil \lg(B+1) \rceil$ bits for representation

Addition II

Naive Attempt.

Add(A, B):

- sum = A
- For *i* = 1 to *B*:
 - sum + = 1
- Return sum
- Note that the inner loop runs B times, which is at least 2^{b-1},
 i.e., exponential in the input size. So, this algorithm is
 inefficient.

Efficient Addition Algorithm.

Add(A, B):

- $c = \max\{a, b\}, \text{ carry} = 0$
- For i = 0 to c 1:
 - $C_i = A_i + B_i + carry$
 - If $C_i \geqslant 2$:
- carry = 1
- $C_i = C_i\%2$
- Else: carry = 0
- If carry == 1:
 - c+=1
 - $C_{c-1} = 1$
- Return $C_{c-1}C_{c-2}...C_1C_0$

Addition IV

• The running time of this algorithm is O(a + b), where $a = \log A$ and $b = \log B$. This algorithm is efficient!

Multiplication I

- Suppose we are given two number A and B. Our objective is to generate the binary representation of the product of these two numbers.
- Our algorithm should have running time polynomial in $a = \lceil \lg(A+1) \rceil$ and $b = \lceil \lg(B+1) \rceil$

Multiplication II

Naive Attempt.

Multiply(A, B):

- product = 1
- For i = 1 to B:
 - product+ = A
- Return product
- Note that the inner loop runs B times, which is at least 2^{b-1},
 i.e., exponential in the input size. So, this algorithm is
 inefficient.

Multiplication III

Efficient Addition Algorithm.

Multiply(A, B):

- to add = A
- remains = B
- product = 0
- While remains > 0:
 - If remains&1 = 1: $product + = to_add$
 - to $add = to add \ll 1$
 - remains = remains $\gg 1$
- Return product
- The running time of this algorithm is $O((a+b)^2)$, where $a = \log A$ and $b = \log B$. This algorithm is efficient!

Multiplication IV

 Additional Reading. Read Fast Fourier Transform for even faster multiplication algorithms!

Division

- Students are encouraged to write the pseudocode of an efficient division algorithm that takes as input integers A and B and outputs integers M and R such that

 - **2** $R \in \{0, \dots, A-1\}$

Finding Greatest Common Divisor I

- Our objective is to find the greatest common divisor G of two input integers A and B
- Note that if we iterate over all integers $\{1,\ldots,A\}$ to find the largest integer that divides B, then this algorithm has a loop that runs A times, that is, it is exponential in the input length
- So, we use Euclid's GCD algorithm. Let R be the remainder of dividing B by A. If R=0, then A is the GCD of A and B. Otherwise, it recursively returns the $\gcd(R,A)$. This algorithm is based on the observation that

$$\gcd(A,B)=\gcd(R,A)$$

Students are encouraged to prove this statement.

Finding Greatest Common Divisor II

Euclid's GCD Algorithm.

GCD(A, B)

- R = B%A
- While *R* > 0 :
 - \bullet B=A
 - \bullet A=R
 - R = B%A
- Return A
- Exercise. Prove that this is an efficient algorithm.

Generate *n*-bit Random Number

• The following code generates a random number in the range $\lceil 2^{n-1}, 2^n - 1 \rceil$

Random(n):

- C = 1
- For i = 1 to (n 1):
 - $r \stackrel{\$}{\leftarrow} \{0, 1\}$
 - $C = (C \ll 1) | r$
- It is easy to see that this is an efficient algorithm

Generate a Random *n*-bit Prime I

- Assume that there exists an efficient algorithm Is_Prime(N)
 that tests whether the integer N is a prime or not. In the
 future, we shall see one such algorithm.
- Consider the following code

```
Prime(n):
      • While true :
      • P = Random(n)
      • If Is_Prime(P) : Return P
```

• The efficiency of the above algorithm depends on the number of times the while-loop runs, which depends on the number of primes in the range $\lceil 2^{n-1}, 2^n - 1 \rceil$

Generate a Random *n*-bit Prime II

 We shall rely on the density of prime numbers to understand the running time of the algorithm mentioned above

Theorem (Prime Number Theorem)

There are (roughly) $N/\log N$ prime numbers < N

• So, there are roughly $2^n/n$ prime numbers $< 2^n$. Similarly, there are roughly $2^{n-1}/(n-1)$ prime numbers $< 2^{n-1}$. So, in the range $\left[2^{n-1}, 2^n - 1\right]$, the number of primes is (roughly)

$$\frac{2^n}{n} - \frac{2^{n-1}}{n-1} = 2^{n-1} \left(\frac{2}{n} - \frac{1}{n-1} \right) \approx 2^{n-1} \frac{1}{n}$$

• The range $[2^{n-1}, 2^n - 1]$ has a total of 2^{n-1} numbers.

Generate a Random *n*-bit Prime III

 So, the probability that a random number picked from this range is a prime number is (roughly)

$$\frac{2^{n-1} \cdot \frac{1}{n}}{2^{n-1}} = \frac{1}{n}$$

- Intuitively, if we run the inner-loop *n* times, then we expect to encounter one prime number. We shall make this more formal in the next class.
- I want to emphasize that if the density of the primes was not 1/poly(n), then the algorithm presented above will not be efficient. We are extremely fortunate that primes are so dense!